资源类型

期刊论文 458

会议视频 25

会议信息 2

年份

2024 1

2023 44

2022 38

2021 53

2020 27

2019 24

2018 25

2017 16

2016 23

2015 23

2014 15

2013 17

2012 15

2011 22

2010 19

2009 26

2008 11

2007 18

2006 12

2005 6

展开 ︾

关键词

钢结构 8

建筑科学 7

三峡工程 3

优化设计 3

耐久性 3

飞机结构 3

DSM(设计结构矩阵) 2

Quantitative structure 2

imge analysis 2

stereology 2

产业结构 2

关键技术 2

压力容器技术 2

可持续发展 2

城镇建设 2

机械结构 2

疲劳寿命 2

结构调整 2

能源结构 2

展开 ︾

检索范围:

排序: 展示方式:

Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation

Zhenheng Diao, Lushi Cheng, Wen Guo, Xu Hou, Pengfei Zheng, Qiuyueming Zhou

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 643-653 doi: 10.1007/s11705-020-1972-3

摘要: An encapsulation-structured Fe O @meso-ZSM-5 (Fe@MZ5) was fabricated by confining Fe O nanoparticles (ca. 4 nm) within the ordered mesopores of hierarchical ZSM-5 zeolite (meso-ZSM-5), with ferric oleate and amphiphilic organosilane as the iron source and meso-porogen, respectively. For comparison, catalysts with Fe O (ca. 12 nm) encapsulated in intra-crystal holes of meso-ZSM-5 and with MCM-41 or ZSM-5 phase as the shell were also prepared via sequential desilication and recrystallization at different pH values and temperatures. Catalytic phenol hydroxylation performance of the as-prepared catalysts using H O as oxidant was compared. Among the encapsulation-structured catalysts, Fe@MZ5 showed the highest phenol conversion and hydroquinone selectivity, which were enhanced by two times compared to the Fe-oxide impregnated ZSM-5 (Fe/Z5). Moreover, the Fe-leaching amount of Fe@MZ5 was only 3% of that for Fe/Z5. The influence of reaction parameters, reusability, and ·OH scavenging ability of the catalysts were also investigated. Based on the above results, the structure-performance relationship of these new catalysts was preliminarily described.

关键词: phenol hydroxylation     encapsulation structure     structure-performance relationship     meso-ZSM-5     ferric oxide    

The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone

Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 792-801 doi: 10.1007/s11709-020-0629-0

摘要: Finite element analysis is developed to simulate the breakage of capsule in capsule-based self-healing concrete. A 2D circular capsule with different core-shell thickness ratios embedded in the mortar matrix is analyzed numerically along with their interfacial transition zone. Zero-thickness cohesive elements are pre-inserted into solid elements to represent potential cracks. This study focuses on the effects of mismatch fracture properties, namely fracture strength and energy, between capsule and mortar matrix into the breakage likelihood of the capsule. The extensive simulations of 2D specimens under uniaxial tension were carried out to investigate the key features on the fracture patterns of the capsule and produce the fracture maps as the results. The developed fracture maps of capsules present a simple but valuable tool to assist the experimentalists in designing appropriate capsule materials for self-healing concrete.

关键词: self-healing concrete     interfacial zone     capsule materials     cohesive elements     fracture maps    

Immobilization of

Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU

《化学科学与工程前沿(英文)》 2014年 第8卷 第3期   页码 353-361 doi: 10.1007/s11705-014-1421-2

摘要: Mesoporous silica particles were prepared for efficient immobilization of the -glucuronidase (GUS) through a biomimetic mineralization process, in which the solution containing lysozyme and GUS were added into the prehydrolyzed tetraethoxysilane (TEOS) solution. The silica particles were formed in a way of biomineralization under the catalysis of lysozyme and GUS was immobilized into the silica particles simultaneously during the precipitation process. The average diameter of the silica particles is about 200 nm with a pore size of about 4 nm. All the enzyme molecules are tightly entrapped inside the biosilica nanoparticles without any leaching even under a high ionic strength condition. The immobilized GUS exhibits significantly higher thermal and pH stability as well as the storage and recycling stability compared with GUS in free form. No loss in the enzyme activity of the immobilized GUS was found after 30-day’s storage, and the initial activity could be well retained after 12 repeated cycles.

关键词: storage and recycling stability     silica nanoparticles     biocatalysis     biomimetic synthesis     β-glucuronidase encapsulation    

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

《化学科学与工程前沿(英文)》 2023年 第17卷 第8期   页码 1038-1050 doi: 10.1007/s11705-022-2279-3

摘要: Phase change materials are potential candidates for the application of latent heat storage. Herein, we fabricated porous capsules as shape-stable materials from cellulose-based polyelectrolyte complex, which were first prepared using cellulose 6-(N-pyridinium)hexanoyl ester as the cationic polyelectrolyte and carboxymethyl cellulose as the anionic polyelectrolyte to encapsulate polyethylene glycol by the vacuum impregnation method. Furthermore, the multi-walled carbon nanotube or graphene oxide, which were separately composited into the polyelectrolytes complex capsules to enhance thermal conductivity and light-to-thermal conversion efficiency. These capsules owned a typical core–shell structure, with an extremely high polyethylene glycol loading up to 34.33 g∙g‒1. After loading of polyethylene glycol, the resulted cellulose-based composite phase change materials exhibited high thermal energy storage ability with the latent heat up to 142.2 J∙g‒1, which was 98.5% of pure polyethylene glycol. Further results showed that the composite phase change materials demonstrated good form-stable property and thermal stability. Moreover, studies involving light-to-thermal conversion determined that composite phase change materials exhibited outstanding light-to-thermal conversion performance. Considering their exceptional comprehensive features, innovative composite phase change materials generated from cellulose presented a highly interesting choice for thermal management and renewable thermal energy storage.

关键词: cellulose     polyelectrolytes     phase change materials     thermal energy storage     light-to-thermal conversion    

基于云制造的产品协同设计平台架构研究

魏巍,王宇飞,陶永

《中国工程科学》 2020年 第22卷 第4期   页码 34-41 doi: 10.15302/J-SSCAE-2020.04.014

摘要:

产品设计是提高产品质量和降低制造成本的关键环节,而云制造作为一种新的制造模式和集成技术正逐渐兴起,成为先进制造的重要发展方向。为了应对传统制造业向服务型和创新型制造业转变的挑战,本文在分析协同设计领域现状的基础上,总结了传统制造模式对海量资源共享和按需使用方面存在的问题。研究提出了一种基于云制造的产品协同设计平台架构,详细阐述了平台架构的各子层含义,构建云制造产品协同设计平台的云制造、产品族和产品平台、产品协同设计3类关键技术。最后,以某公司部署的云制造产品协同设计平台系统为例,分析了系统架构和功能,比较了云制造模式与传统制造模式在任务分配和任务完成时间上的差异,验证了云制造产品设计平台系统的有效性和优越性,并对该系统的实际应用和未来研
究方向进行了展望。

关键词: 云制造     协同设计     产品平台     资源封装     平台架构    

Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability

《化学科学与工程前沿(英文)》 2023年 第17卷 第6期   页码 784-794 doi: 10.1007/s11705-022-2278-4

摘要: In situ encapsulation is an effective way to synthesize enzyme@metal–organic framework biocatalysts; however, it is limited by the conditions of metal–organic framework synthesis and its acid-base stability. Herein, a biocatalytic platform with improved acid-base stability was constructed via a one-pot method using bismuth-ellagic acid as the carrier. Bismuth-ellagic acid is a green phenol-based metal–organic framework whose organic precursor is extracted from natural plants. After encapsulation, the stability, especially the acid-base stability, of amyloglucosidases@bismuth-ellagic acid was enhanced, which remained stable over a wide pH range (2–12) and achieved multiple recycling. By selecting a suitable buffer, bismuth-ellagic acid can encapsulate different types of enzymes and enable interactions between the encapsulated enzymes and cofactors, as well as between multiple enzymes. The green precursor, simple and convenient preparation process provided a versatile strategy for enzymes encapsulation.

关键词: bismuth-ellagic acid     in situ encapsulation     enzyme@MOF biocomposites    

叶酸靶向含硼脂质体的制备及其包封率的测定

王志会,钱林学,刘冬

《中国工程科学》 2012年 第14卷 第8期   页码 78-81

摘要:

制备具有良好靶向性及包封率高的硼脂质体,为硼中子俘获治疗方法的研究与应用建立了一个有效的靶向给药途径。采用复乳法及薄膜—超声分散法制备叶酸靶向硼脂质体, 利用高效液相色谱法检测4—羟基苯硼酸4—Hydroxyphenylboronicacid(HBA)脂质体、2—噻吩硼酸2—thiophenylboric acid(TBA)脂质体、4—叔丁基苯硼酸4—tert-Butylphenylboronic Acid(BBA)脂质体的含量及包封率,以包封率为评价指标,采用单因素法优化脂质体的制备处方和工艺条件。筛选出HBA、TBA、BBA最优的色谱条件,分别绘制出标准曲线,结果表明在1~100 μg/mL范围内线性关系良好。HBA、TBA、BBA脂质体在最优制备处方和工艺条件下包封率分别为25.7 %、38.9 %、94.8 %。BBA 脂质体优化后的制备处方和工艺条件如下:胆固醇与磷脂质量比为 1∶1,药脂比为 1∶50,pH值为7.4,按该处方工艺制备的BBA 脂质体包封率在94.8 %。制备叶酸靶向脂质体的优选处方和制备工艺稳定可行,质量控制方法简单、准确, 包封率高。

关键词: 硼中子俘获治疗     脂质体     叶酸靶向     包封率    

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1419-1

摘要:

• Pore structure affects biologically activated carbon performance.

关键词: Granular activated carbon     Biologically activated carbon filter     Bacterial community structure     Pore structure    

Hierarchical fractal structure of perfect single-layer graphene

T. Zhang, K. Ding

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 371-382 doi: 10.1007/s11465-013-0279-1

摘要:

The atomic lattice structure of perfect single-layer graphene that can actually be regarded as a kind of hierarchical fractal structure from the perspective of fractal geometry was studied for the first time. Three novel and special discoveries on hierarchical fractal structure and sets were unveiled upon examination of the regular crystal lattices of the single-layer graphene. The interior fractal-type structure was discovered to be the fifth space-filling curve from physical realm. Two efficient methods for calculating the fractal dimension of this fresh member was also provided. The outer boundary curve had a fractal dimension equal to one, and a multi-fractal structure from a naturally existing material was found for the first time. A series of strict self-similar hexagons comprised a rotating fractal set. These hexagons slewed at a constant counterclockwise angle of 19.1° when observed from one level to the next higher level. From the perspective of fractal geometry, these pioneering discoveries added three new members to the existing regular fractal structures and sets. A fundamental example of a multi-fractal structure was also presented.

关键词: hierarchical fractal structure     fractal dimension     the fifth space-filling curve     multi-fractal structure    

Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture

Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 672-683 doi: 10.1007/s11705-019-1856-6

摘要: Carbon capture is widely recognised as an essential strategy to meet global goals for climate protection. Although various CO capture technologies including absorption, adsorption and membrane exist, they are not yet mature for post-combustion power plants mainly due to high energy penalty. Hence researchers are concentrating on developing non-aqueous solvents like ionic liquids, CO -binding organic liquids, nanoparticle hybrid materials and microencapsulated sorbents to minimize the energy consumption for carbon capture. This research aims to develop a novel and efficient approach by encapsulating sorbents to capture CO in a cold environment. The conventional emulsion technique was selected for the microcapsule formulation by using 2-amino-2-methyl-1-propanol (AMP) as the core sorbent and silicon dioxide as the shell. This paper reports the findings on the formulated microcapsules including key formulation parameters, microstructure, size distribution and thermal cycling stability. Furthermore, the effects of microcapsule quality and absorption temperature on the CO loading capacity of the microcapsules were investigated using a self-developed pressure decay method. The preliminary results have shown that the AMP microcapsules are promising to replace conventional sorbents.

关键词: carbon capture     microencapsulated sorbents     emulsion technique     low temperature adsorption and absorption    

Floating forest: A novel breakwater-windbreak structure against wind and wave hazards

《结构与土木工程前沿(英文)》 2021年 第15卷 第5期   页码 1111-1127 doi: 10.1007/s11709-021-0757-1

摘要: A novel floating breakwater-windbreak structure (floating forest) has been designed for the protection of vulnerable coastal areas from extreme wind and wave loadings during storm conditions. The modular arch-shaped concrete structure is positioned perpendicularly to the direction of the prevailing wave and wind. The structure below the water surface acts as a porous breakwater with wave scattering capability. An array of tubular columns on the sloping deck of the breakwater act as an artificial forest-type windbreak. A feasibility study involving hydrodynamic and aerodynamic analyses has been performed, focusing on its capability in reducing wave heights and wind speeds in the lee side. The study shows that the proposed 1 km long floating forest is able to shelter a lee area that stretches up to 600 m, with 40%–60% wave energy reduction and 10%–80% peak wind speed reduction.

关键词: floating structure     breakwater     windbreak     hydrodynamic     CFD    

Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted

《化学科学与工程前沿(英文)》 2022年 第16卷 第8期   页码 1268-1280 doi: 10.1007/s11705-022-2143-5

摘要: The micro-nano composite structure can endow separation membranes with special surface properties, but it often has the problems of inefficient preparation process and poor structural stability. In this work, a novel atomization-assisted nonsolvent induced phase separation method, which is also highly efficient and very simple, has been developed. By using this method, a bicontinuous porous microfiltration membrane with robust micro-nano composite structure was obtained via commercially available polymers of polyacrylonitrile and polyvinylpyrrolidone. The formation mechanism of the micro-nano composite structure was proposed. The microphase separation of polyacrylonitrile and polyvinylpyrrolidone components during the atomization pretreatment process and the hydrogen bonding between polyacrylonitrile and polyvinylpyrrolidone molecules should have resulted in the nano-protrusions on the membrane skeleton. The membrane exhibits superhydrophilicity in air and superoleophobicity underwater. The membrane can separate both surfactant-free and surfactant-stabilized oil-in-water emulsions with high separation efficiency and permeation flux. With excellent antifouling property and robust microstructure, the membrane can easily be recycled for long-term separation. Furthermore, the scale-up verification from laboratory preparation to continuous production has been achieved. The simple, efficient, cost-effective preparation method and excellent membrane properties indicate the great potential of the developed membranes in practical applications.

关键词: atomization     nonsolvent induced phase separation     bicontinuous porous structure     micro-nano composite structure     oil-water separation    

Smart optical-fiber structure monitoring based on granular computing

Guan LU, Dakai LIANG,

《机械工程前沿(英文)》 2009年 第4卷 第4期   页码 462-465 doi: 10.1007/s11465-009-0073-2

摘要: Using an optic fiber self-diagnosing system in health monitoring has become an important direction of smart materials and structure research. The buried optic fiber sensor can be used to test the parameters of the composite material. The granular computing method can reach the requirement of damage detection by analyzing digital signals and character signals of the smart structure at the same time. The paper investigates an optic fiber smart layer and presents a method for realizing optic fiber smart structure monitoring and damage detection by using granular computing. After the analysis, it is presumed that optic fiber smart structure monitoring based on granular computation can identify the damage from complex signals.

关键词: smart material and structure     GrC     optical fiber sensor     rough set     clustering algorithm    

Automated classification of civil structure defects based on convolutional neural network

Pierclaudio SAVINO, Francesco TONDOLO

《结构与土木工程前沿(英文)》 2021年 第15卷 第2期   页码 305-317 doi: 10.1007/s11709-021-0725-9

摘要: Today, the most commonly used civil infrastructure inspection method is based on a visual assessment conducted by certified inspectors following prescribed protocols. However, the increase in aggressive environmental and load conditions, coupled with the achievement of many structures of the life-cycle end, has highlighted the need to automate damage identification and satisfy the number of structures that need to be inspected. To overcome this challenge, this paper presents a method for automating concrete damage classification using a deep convolutional neural network. The convolutional neural network was designed after an experimental investigation of a wide number of pretrained networks, applying the transfer-learning technique. Training and validation were conducted using a database built with 1352 images balanced between “undamaged”, “cracked”, and “delaminated” concrete surfaces. To increase the network robustness compared to images in real-world situations, different image configurations have been collected from the Internet and on-field bridge inspections. The GoogLeNet model, with the highest validation accuracy of approximately 94%, was selected as the most suitable network for concrete damage classification. The results confirm that the proposed model can correctly classify images from real concrete surfaces of bridges, tunnels, and pavement, resulting in an effective alternative to the current visual inspection techniques.

关键词: concrete structure     infrastructures     visual inspection     convolutional neural network     artificial intelligence    

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 897-908 doi: 10.1007/s11705-021-2127-x

摘要: Catalyst particle shapes and pore structure engineering are crucial for alleviating internal diffusion limitations in the hydrodesulfurization (HDS)/hydrodenitrogenation (HDN) of gas oil. The effects of catalyst particle shapes (sphere, cylinder, trilobe, and tetralobe) and pore structures (pore diameter and porosity) on HDS/HDN performance at the particle scale are investigated via mathematical modeling. The relationship between particle shape and effectiveness factor is first established, and the specific surface areas of different catalyst particles show a positive correlation with the average HDS/HDN reaction rates. The catalyst particle shapes primarily alter the average HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. An optimal average HDS/HDN reaction rate exists as the catalyst pore diameter and porosity increase, and this optimum value indicates a tradeoff between diffusion and reaction. In contrast to catalyst particle shapes, the catalyst pore diameter and the porosity of catalyst particles primarily alter the surface HDS/HDN reaction rate to adjust the HDS/HDN effectiveness factor. This study provides insights into the engineering of catalyst particle shapes and pore structures for improving HDS/HDN catalyst particle efficiency.

关键词: hydrodesulfurization     hydrodenitrogenation     particle shape     pore structure    

标题 作者 时间 类型 操作

Fabrication and catalytic performance of meso-ZSM-5 zeolite encapsulated ferric oxide nanoparticles for phenol hydroxylation

Zhenheng Diao, Lushi Cheng, Wen Guo, Xu Hou, Pengfei Zheng, Qiuyueming Zhou

期刊论文

The effects of mismatch fracture properties in encapsulation-based self-healing concrete using cohesive-zone

Luthfi Muhammad MAULUDIN, Chahmi OUCIF, Timon RABCZUK

期刊论文

Immobilization of

Xiaokai SONG,Zhongyi JIANG,Lin LI,Hong WU

期刊论文

Encapsulation of polyethylene glycol in cellulose-based porous capsules for latent heat storage and light-to-thermal

期刊论文

基于云制造的产品协同设计平台架构研究

魏巍,王宇飞,陶永

期刊论文

Enzyme@bismuth-ellagic acid: a versatile platform for enzyme immobilization with enhanced acid-base stability

期刊论文

叶酸靶向含硼脂质体的制备及其包封率的测定

王志会,钱林学,刘冬

期刊论文

Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics

期刊论文

Hierarchical fractal structure of perfect single-layer graphene

T. Zhang, K. Ding

期刊论文

Encapsulation of 2-amino-2-methyl-1-propanol with tetraethyl orthosilicate for CO2 capture

Sidra Rama, Yan Zhang, Fideline Tchuenbou-Magaia, Yulong Ding, Yongliang Li

期刊论文

Floating forest: A novel breakwater-windbreak structure against wind and wave hazards

期刊论文

Bicontinuous porous membranes with micro-nano composite structure using a facile atomization-assisted

期刊论文

Smart optical-fiber structure monitoring based on granular computing

Guan LU, Dakai LIANG,

期刊论文

Automated classification of civil structure defects based on convolutional neural network

Pierclaudio SAVINO, Francesco TONDOLO

期刊论文

Catalyst particle shapes and pore structure engineering for hydrodesulfurization and hydrodenitrogenation

期刊论文